iTest қолданбасын жүктеп алу
Мектеп емтихандарына ыңғайлырақ форматта дайындалыңыз
Келтіру формулалары
\(1.\ sin(\pi-\alpha)=sin\alpha\ \ \ \ \ \ \ \ \ sin(\pi+\alpha)=sin\alpha\\ 2.\ cos(\pi-\alpha)=-cos\alpha\ \ \ \ \ \ cos(\pi+\alpha)=-cos\alpha\\ 3.\ tg(\pi-\alpha)=-tg\alpha\ \ \ \ \ \ \ \ \ \ tg(\pi+\alpha)=tg\alpha\\ 4.\ ctg(\pi-\alpha)=-ctg\alpha\ \ \ \ \ \ \ ctg(\pi+\alpha)=ctg\alpha\\ 5.\ sin(2\pi-\alpha)=-sin\alpha\ \ \ \ sin(2\pi+\alpha)=sin\alpha\\ 6.\ cos(2\pi-\alpha)=cos\alpha\ \ \ \ \ \ cos(2\pi+\alpha)=cos\alpha\\ 7.\ tg(2\pi-\alpha)=-tg\alpha\ \ \ \ \ \ \ \ tg(2\pi+\alpha)=tg\alpha\\ 8.\ ctg(2\pi-\alpha)=-ctg\alpha\ \ \ \ \ ctg(\pi+\alpha)=ctg\alpha\\ 9.\ sin(\frac{\pi}{2}-\alpha)=cos\alpha\ \ \ \ \ \ \ sin(\frac{\pi}{2}+\alpha)=cos\alpha\\ 10.\ cos(\frac{\pi}{2}-\alpha)=sin\alpha\ \ \ \ \ cos(\frac{\pi}{2}+\alpha)=-sin\alpha\\ 11.\ tg(\frac{\pi}{2}-\alpha)=ctg\alpha\ \ \ \ \ \ \ \ tg(\frac{\pi}{2}+\alpha)=-ctg\alpha\\ 12.\ ctg(\frac{\pi}{2}-\alpha)=tg\alpha\ \ \ \ \ \ \ ctg(\frac{\pi}{2}+\alpha)=-tg\alpha\\ \)
-
sin(– 960\(^°\)) = ?
-
\(\frac{tg(\pi-\alpha)\cdot\ cos(-\alpha)}{\sin(\frac{\pi}{2}-\alpha)}=?\)
-
\(tg(\frac{3\pi}{2}-\alpha)tg(\pi+\alpha)-\cos(\frac{\pi}{2}+\alpha)\sin(\pi+\alpha)=?\)
-
\(\frac{cos^2\alpha+2sin^2(\alpha-\pi)}{cos^3(\alpha-4\pi)}+\frac{cos^2\alpha+4sin\alpha+sin^2(\alpha+\pi)}{cos\alpha(4sin\alpha+1)}=?\)
-
\(ctg(90^0-\alpha)[\cos(360^\circ+\alpha)-\sin\alpha]+\frac{\sin\alpha+tg\alpha}{\frac{1}{\sin\alpha}+ctg\alpha}=?\)
-
\(\frac{2-\frac{1}{sin^2(\frac{\pi}{2}+\alpha)}}{1-2cos^2(\pi-\alpha)}+ctg^2(\frac{\pi}{2}-\alpha)=?\)
-
\(\frac{tg(\alpha+\pi)-\sin(\pi+\alpha)}{ctg(\pi+\alpha)+\frac{1}{\cos(\frac{\pi}{2}-\alpha)}}-ctg(\alpha+\frac{\pi}{2})(\sin(\frac{\pi}{2}-\alpha)+\\\cos(\frac{\pi}{2}+\alpha))=?\)
-
\(\frac{2cos^2\alpha}{1-sin\alpha}+2cos(\frac{\pi}{2}+\alpha)=?\)
-
Ықшамдаңыз.
\(tg(\frac{3\pi}{2}- \alpha)\cdot tg(\pi+\alpha)-(cos\frac{\pi}{2})\cdot sin(2\pi+\alpha)\)
-
Есептеңіз.
\(\sin \ 225^\circ \cdot \cos \ 480^\circ \cdot tg \ 330^\circ\cdot ctg \ 240^\circ\).
-
Есептеңіз.
\(sin \ 225^\circ \cdot cos \ 480^\circ \cdot tg \ 330^\circ\cdot ctg \ 240^\circ.\)