Скачай приложение iTest
Готовься к школьным экзаменам в более удобном формате
Взаимное расположение прямой и окружности
Существует 3 случая взаимного расположения прямой и окружности в зависимости от соотношения между радиусом r окружности и расстоянием d прямой от центра окружности.
1. d < r. Если расстояние от центра окружности до прямой меньше радиуса окружности, то окружность и прямая имеют две общие точки.
2. d = r. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют единственную общую точку.
3. d > r. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.
Прямая, имеющая с окружностью ровно одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Прямая, имеющая с окружностью две общие точки, называется секущей.
Теоремы о касательных и секущих
- Касательная к окружности перпендикулярна радиусу, проведенному к точке касания.
- Если из данной точки проведены к окружности две касательные, то отрезки касательных равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке: \(AB=AC\).
- Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть: \(AC^2=CD\cdot BC\).
- Произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть: \(AC\cdot BC=EC\cdot DC\).