Скачай приложение iTest
Готовься к школьным экзаменам в более удобном формате
Гомотетия. Подобные фигуры. Признаки подобия треугольников, подобие прямоугольных треугольников
Подобие – это понятие, характеризующее наличие одинаковой, не зависящей от размеров, формы у геометрических фигур.
Подобные фигуры – это фигуры, для которых существует взаимно-однозначное соответствие, при котором расстояние между любыми парами их соответствующих точек изменяется в одно и то же число раз.
Например, то, что фигуры F1 и F2 подобны, означает, что для любых двух точек M1 и N1 фигуры F1 и сопоставленных им точек M2 и N2 фигуры F2 выполняется соответствие \(\frac{M_1N_1}{M_2N_2}=k\), где k – одно и то же число для всех точек (k > 0). Число k называется коэффициентом подобия.Преобразование фигуры F1 в фигуру F2, при котором расстояния между точками изменяются в одно и то же число раз, называется преобразованием подобия.
Гомотетия – это преобразование подобия. Это преобразование, в котором получаются подобные фигуры (фигуры, у которых соответствующие углы равны и стороны пропорциональны).
Гомотетия – это преобразование, при котором каждой точке A ставится в соответствие точка A1, лежащая на прямой OA, по правилу \(OA_1=k\cdot OA\), где k – постоянное, отличное от нуля число, O – фиксированная точка. Точка O называется центром гомотетии, число k – коэффициентом гомотетии.
Свойства преобразования гомотетии:
1) При гомотетии прямые переходят в прямые, полупрямые – в полупрямые, отрезки – в отрезки, углы – в углы.
2) Сохраняются углы между полупрямыми (соответственно, сохраняется параллельность прямых). Стороны гомотетичных фигур пропорциональны, а углы равны.
Подобные треугольники – это треугольники, у которых углы равны, а стороны пропорциональны.
Свойства подобных треугольников
- Периметры подобных треугольников относятся как их соответствующие стороны: \(\frac{P_{A_1B_1C_1}}{P_{ABC}}=\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{A_1C_1}{AC}=k\).
- Соответствующие линейные элементы подобных треугольников (медианы, высоты, биссектрисы и т. д.) относятся как их соответствующие стороны.
- Площади подобных фигур относятся как квадраты их соответствующих линейных размеров: \(\frac{S_{A_1B_1C_1}}{S_{ABC}}=\frac{A_1B_1^2}{AB^2}=\frac{B_1C_1^2}{BC^2}=\frac{A_1C_1^2}{AC^2}=k^2\).
1-й признак подобия треугольников
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
\(\left. \begin{aligned} \angle A=\angle A_1\\ \angle B=\angle B_1 \end{aligned} \right \} \Rightarrow \Delta ABC \sim \Delta A_1B_1C_1\)
2-й признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны.
3-й признак подобия треугольников
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Признаки подобия прямоугольных треугольников
- Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
- Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны.
- Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны.
-
В треугольник AFK вписан ромб ABCD так, что угол A у них общий, а вершина C принадлежит стороне FK. Найдите сторону ромба, если AF = 21 см, AK = 24 см.
-
В прямоугольном треугольнике ABC с прямым углом A, сторонами AB = 4 см, BC = 8 см и высотой AK, найдите отрезки KB и KC.
-
Прямая, параллельная основанию треугольника, делит его на треугольник и трапецию, площади которых относятся как 4:5. Периметр образовавшегося треугольника равен 20 см. Найдите периметр данного треугольника.