Скачай приложение iTest
Готовься к школьным экзаменам в более удобном формате
Перпендикуляр и наклонная. Расстояние от прямой до плоскости
Перпендикуляром, опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.
Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной. Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
AB – перпендикуляр к плоскости α. AC – наклонная, CB – проекция. С – основание наклонной, B – основание перпендикуляра.
У равных наклонных, проведенных к плоскости из одной точки, проекции равны.
Из двух наклонных, проведенных к плоскости из одной точки, больше та, у которой проекция больше.
Теорема о трех перпендикулярах. Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной.
Обратная теорема. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Прямая a, не лежащая в плоскости α, перпендикулярна прямой b, лежащей в плоскости α, тогда и только тогда, когда проекция a' прямой a перпендикулярна прямой b.
Пример. Отрезок SО – перпендикуляр к плоскости квадрата АВСD, где точка О – центр квадрата. Доказать: \(BD \perp SC\).
Доказательство:
Первый способ.
Имеем квадрат, центр квадрата точка – О, SО – перпендикуляр. Значит, для наклонной SC отрезок ОС есть проекция.
Прямая ВD перпендикулярна прямой ОС, которая является проекцией наклонной SC, значит, по теореме о трех перпендикулярах, прямая ВD перпендикулярна наклонной SC.
Второй способ.
Прямая SО перпендикулярна плоскости АВС, а значит – и прямой ВD, лежащей в ней.
Прямая ВD перпендикулярна SО и прямая ВD перпендикулярна прямой АС по свойству квадрата.
Получаем, что прямая ВD перпендикулярна двум пересекающимся прямым плоскости SОС, значит, она перпендикулярна ко всей плоскости SОС, а значит – и к прямой SC, лежащей в этой плоскости.
Расстояние от точки до плоскости есть перпендикуляр, опущенный на эту плоскость, то есть расстояние от точки А до плоскости a, есть длина перпендикуляра АВ.
- Если прямая параллельна плоскости, то расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.
- Если две плоскости параллельны, то расстояние от произвольной точки одной из плоскостей до другой называется расстоянием между данными плоскостями.
- Если две прямые скрещиваются, то расстояние между одной из этих прямых и плоскостью, проведенной через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми.
-
В единичном тетраэдре DABC найдите расстояние от точки C до плоскости ADB.
-
В кубе, ребра которого равны \(\sqrt2\), найдите расстояние от точки \(B\) до плоскости \(CDA_1.\)
-
Основанием прямого параллелепипеда служит параллелограмм с углом 120\(^\circ\) и сторонами, равными 3 и 4. Меньшая диагональ параллелепипеда равна большей диагонали основания. Найдите объем параллелепипеда.
-
Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см. Найдите расстояние от точки М до плоскости ABC, если АВ = 6 см.
-
Через вершину А прямоугольника АВСD проведена прямая АК, перпендикулярная его плоскости. Расстояния от точки К до других вершин прямоугольника равны 12 м, 14 м, 18 м. Найдите отрезок АК.
-
Отрезок АD перпендикулярен к плоскости равнобедренного треугольника АВС.
АВ = АС = 10 см, ВС = 12 см, AD = 6 см.
Найдите расстояние от точки D до ВС.
-
Через вершину прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости прямоугольника.
КD = 4\(\sqrt{10}\), КВ = 5, КС = 13. Найдите АК.