Сдать пробный ЕНТ
Русский

Скачай приложение iTest

Готовься к школьным экзаменам в более удобном формате

Спирты и фенолы

Конспект

Предельные спирты

Производные углеводородов, в молекулах которых один или несколько атомов водорода замещены гидроксильными группами (ОН), называют предельными спиртами или алкоголями. Общая формула R – OH.

Спирты классифицируются: 1) по строению углеводородного радикала различают: а) спирты алифатического (жирного ряда), Аlk – ОН; б) ароматические, которые разделяются на фенолы Аr – OH и жирноароматические спирты \(Ar(CH_2)_n-OH\); 2) по числу гидроксилов спирты бывают одно-, двух– и многоатомные. Например: а) одноатомные спирты СН3  ОН (метанол); б) двухатомный спирт HO – CH2 – CH2OH (этандиол); в) трехатомный спирт НОСН2 – СНОН – СН2ОН (глицерин).

В зависимости от характера углеродного атома, при котором находится гидроксил, различают первичные, вторичные и третичные спирты.

1) R – CH– OH, или Аr – СН– ОН, – первичный спирт;

 

2) \(R' \\ ~~~~\diagdown \\ ~~~~~~CH-OH - вторичный~ спирт; \\ ~~~~\diagup \\ R\)

 

3) \(R \\~~~~~ \diagdown \\ R'—C-OH -третичный~ спирт\\ ~~~~~\diagup \\ R''\)

 

Изомерия и номенклатура.

Изомерия спиртов зависит от строения углеводородной цепи и положения гидроксила в цепи. Спирты часто называют по радикально-спиртовой и систематической (ИЮПАК) номенклатуре.

При названии спирта по радикально-спиртовой номенклатуре в основе лежит название соответствующего углеводородного радикала, связанного с гидроксилом, с прибавлением окончания – овый спирт. Например: 1) СН– ОН – метиловый спирт (древесный); 2) С2Н– ОН – этиловый спирт; 3) н-С4Н9ОН – бутиловый спирт;

В основе названия спирта по ИЮПАК лежит наименование углеводорода самой длинной углеводородной цепи, наличие же гидроксильной группы указывается окончанием – ол, с цифрой за ним, указывающей номер атома углерода, при котором стоит гидроксил. При этом углеродная цепь нумеруются таким образом, чтобы гидроксил имел наименьший номер.

Одним из общих способов получения предельных спиртов является гидролиз галогенпроизводных углеводородов в присутствии водных растворов щелочей.

Щелочи ускоряют процесс и, нейтрализуя образующуюся кислоту, делают его необратимым. Реакция проходит при нагревании в течение длительного времени, т. к. исходные галогенуглеводороды плохо растворимы в воде.

 

Строение этилового спирта

Этиловый спирт (этанол) С2Н5ОН – бесцветная, легко испаряющаяся жидкость, которая имеет своеобразный запах и кипит при температуре 78,3°C. Этиловый спирт легче воды – его плотность 0,8 г/см3. Этанол неограниченно смешивается с водой.

Особенности строения этилового спирта.

1. Атом кислорода образует ковалентные связи с другими атомами под некоторым углом друг к другу, а не по прямой линии.

2. В наружном электронном слое его наряду с двумя спаренными s-электронами и двумя спаренными р-электронами имеются два неспаренных р-электрона.

3. Оси этих электронных облаков взаимно перпендикулярны.

4. В направлении их и образуются ковалентные связи атома кислорода с другими атомами (фактически вследствие гибридизации и действия других факторов валентный угол несколько отклоняется от прямого).

Молекула спирта имеет подобное пространственное строение.

Молекулы этанола ассоциированы за счет взаимодействия положительно заряженного атома водорода гидроксильной группы одной молекулы со свободной электронной парой кислорода другой молекулы. Такой тип ассоциации носит название водородной связи. Энергия водородной связи составляет 20-40 кДж/моль, что на порядок ниже энергии ковалентных связей. Отсюда ясно, что более высокие температуры кипения по сравнению с соответствующими углеводородами и алкилгалогенидами обусловлены необходимостью разрыва водородных связей при переходе молекул в газовую фазу, для чего требуется дополнительная энергия.

Характерной особенностью строения этилового спирта является подвижность атома водорода гидроксильной группы, что объясняется ее электронным строением. Важное значение имеет характер связи углерода с кислородом. Вследствие большой электроотрицательности кислорода по сравнению с углеродом связь «углерод – кислород» поляризована с частичным положительным зарядом у атома углерода и отрицательным у кислорода.

Этиловый спирт широко используют в различных областях промышленности и прежде всего в химической. Из него получают синтетический каучук, уксусную кислоту, красители, эссенции, фотопленку, порох, пластмассы. Спирт является хорошим растворителем и антисептиком. Поэтому он находит применение в медицине, парфюмерии.

При приеме внутрь этанол быстро всасывается в кровь и сильно действует на организм. Под влиянием спиртного у человека ослабевает внимание, затормаживается реакция, нарушается корреляция движения. Спирт поражает слизистые оболочки желудочно-кишечного тракта, поражает нервные клетки, ведет к появлению тяжелых психических расстройств.

 

Гомологический ряд спиртов

Характерные особенности гомологического ряда спиртов:

1) этиловый спирт – один из членов гомологического ряда;

2) другие спирты ряда имеют аналогичное химическое и электронное строение;

3) первый представитель ряда – метиловый спирт;

4) в молекулах спиртов может содержаться не одна, а две и больше гидроксильных групп;

5) наличие гидроксильных групп в молекулах обусловливает характерные химические свойства спиртов, т. е. их химическую функцию.

Такие группы атомов называются функциональными группами;

6) спиртами называются органические вещества, молекулы которых содержат одну или несколько функциональных гидроксильных групп, соединенных с углеводородным радикалом;

7) они могут рассматриваться как производные углеводородов, в молекулах которых один или несколько атомов водорода заменены на гидроксильные группы. Спирты приведенного выше ряда можно считать производными предельных углеводородов, в молекулах которых один атом водорода заменен на гидроксильную группу;

8) это гомологический ряд предельных одноатомных спиртов;

9) общая формула веществ этого ряда R – ОН.

10) по систематической номенклатуре названия спиртов производятся от названий соответствующих углеводородов с добавлением суффикса – ол; цифрой указывают атом углерода, при котором находится гидроксильная группа;

11) нумерация углеродных атомов начинается с того конца, к которому ближе функциональная группа;

12) изомерия спиртов обусловливается как изомерией углеродного скелета, так и положением гидроксильной группы. Рассмотрим ее на примере бутиловых спиртов;

13) в зависимости от строения углеродного скелета изомерами будут два спирта – производные бутана и изобутана (н-бутанол, изобутанол);

14) в зависимости от положения гидроксильной группы при том и другом углеродном скелете возможны еще изомеры (вторбутиловый и изобутиловый спирты);

15) водородная связь между молекулами.

Физические свойства спиртов.

1. Прочность водородной связи значительно меньше прочности обычной ковалентной связи (примерно в 10 раз).

2. За счет водородных связей молекулы спирта оказываются ассоциированными, как бы прилипшими друг к другу, на разрыв этих связей необходимо затратить дополнительную энергию, чтобы молекулы стали свободными и вещество приобрело летучесть.

3. Это и является причиной более высокой температуры кипения всех спиртов по сравнению с соответствующими углеводородами.

4. Вода при такой небольшой молекулярной массе имеет необычно высокую температуру кипения.

Химические свойства и применение предельных одноатомных спиртов

Как вещества, содержащие углерод и водород, спирты горят при поджигании, выделяя теплоту, например:

С2Н5ОН + 3O2 → 2СO2 + 3Н2О +1374 кДж,

При горении у них наблюдаются и различия.

Особенности опыта:

1) необходимо налить по 1 мл различных спиртов в фарфоровые чашки и поджечь жидкости;

2) будет заметно, что спирты – первые представители ряда – легко воспламеняются и горят синеватым, почти несветящимся пламенем.

Особенности этих явлений:

а) из свойств, обусловленных наличием функциональной группы ОН, известно о взаимодействии этилового спирта с натрием: 2С2Н5ОН + 2Na → 2C2H5ONa + Н2;

б) продукт замещения водорода в этиловом спирте называется этилатом натрия, он может быть выделен после реакции в твердом виде;

в) реагируют со щелочными металлами другие растворимые спирты, которые образуют соответствующие алкоголяты;

г) взаимодействие спиртов с металлами идет с ионным расщеплением полярной связи О – Н;

д) в подобных реакциях у спиртов проявляются кислотные свойства – отщепление водорода в виде протона.

Понижение степени диссоциации спиртов по сравнению с водой можно объяснить влиянием углеводородного радикала:

а) смещение радикалом электронной плотности связи С – О в сторону атома кислорода ведет к увеличению на последнем частичного отрицательного заряда, при этом он прочнее удерживает атом водорода;

б) степень диссоциации спиртов можно повысить, если в молекулу ввести заместитель, притягивающий к себе электроны химической связи.

Это можно объяснить следующим образом.

1. Атом хлора смещает к себе электронную плотность связи Сl – С.

2. Атом углерода, приобретая вследствие этого частичный положительный заряд, чтобы компенсировать его, смещает в свою сторону электронную плотность связи С-С.

3. По этой же причине электронная плотность связи С – О несколько смещается к атому углерода, а плотность связи О – Н – от атома водорода к кислороду.

4. Возможность отщепления водорода в виде протона от этого возрастает, при этом степень диссоциации вещества повышается.

5. У спиртов может вступать в химические реакции не только гидроксильный атом водорода, но и вся гидроксильная группа.

6. Если в колбе с присоединенным к ней холодильником нагревать этиловый спирт с галогеноводородной кислотой, например бромоводородной (для образования бромоводорода берут смесь бромида калия или бромида натрия с серной кислотой), то через некоторое время можно заметить, что в приемнике под слоем воды собирается тяжелая жидкость – бромэтан.

 

Метанол и этанол

Метиловый спирт, или метанол, его особенности:

1) структурная формула – СН3ОН;

2) это бесцветная жидкость с температурой кипения 64,5°C;

3) ядовит (может вызывать слепоту, смерть);

4) в больших количествах метиловый спирт получается синтезом из оксида углерода (II) и водорода при высоком давлении (20-30 МПа) и высокой температуре (400°C) в присутствии катализатора (около 90% ZnО и 10% Сr2O3) : СО + 2Н2 → СН3ОН;

5) метиловый спирт образуется и при сухой перегонке дерева, поэтому его называют также древесным спиртом. Применяется он в качестве растворителя, а также для получения других органических веществ.

Этиловый (винный) спирт, или этанол, его особенности:

1) структурная формула – СН3СН2ОН;

2) температура кипения 78,4°C;

3) этанол – это одно из важнейших исходных веществ в современной промышленности органического синтеза.

Способы получения этанола:

1) для получения используются различные сахаристые вещества (виноградный сахар, глюкоза, которая путем «брожения» превращается в этиловый спирт). Реакция протекает по схеме:

\(C_6H_{12}O_6\) (глюкоза) \(\rightarrow 2C_2H_5OH+2CO_2\).

2) глюкоза в свободном виде содержится, например, в виноградном соке, при брожении которого получается виноградное вино с содержанием спирта от 8 до 16%;

3) исходным продуктом для получения спирта может служить полисахарид крахмал, который содержится, например, в клубнях картофеля, зернах ржи, пшеницы, кукурузы;

4) для превращения в сахаристые вещества (глюкозу) крахмал предварительно подвергают гидролизу.

Для этого мука или измельченный картофель заваривается горячей водой и по охлаждении в него добавляется солод.

Солод – это проросшие, а затем подсушенные и растертые с водой зерна ячменя.

В солоде содержится диастаз, который действует на процесс осахаривания крахмала каталитически.

Диастаз – это сложная смесь ферментов;

5) по окончании осахаривания к полученной жидкости прибавляются дрожжи, под действием ферментов которых (зимазы) образуется спирт;

6) его отгоняют и затем очищают повторной перегонкой.

В настоящее время осахариванию подвергается также полисахарид – целлюлоза (клетчатка), которая образует главную массу древесины.

Для этого целлюлоза подвергается гидролизу в присутствии кислот (например, древесные опилки при 150–170°C обрабатываются 0,1–5%-ной серной кислотой под давлением 0,7–1,5 МПа).

 

Спирты как производные углеводородов. Промышленный синтез метанола

Генетическая связь между спиртами и углеводородами:

1) спирты могут рассматриваться как гидроксильные производные углеводородов;

2) их можно отнести также к частично окисленным углеводородам, так как, кроме углерода и водорода, они содержат еще кислород;

3) довольно трудно непосредственно заменить атом водорода на гидроксильную группу или внедрить атом кислорода в молекулу углеводорода;

4) это можно осуществить через галогено-производные.

Например, чтобы получить этиловый спирт из этана, нужно сначала получить бромэтан:

С2Н6 + Вr → С2Н5Вr + НВr.

А затем бромэтан превратить в спирт нагреванием с водной щелочью:

С2Н5 Вr + Н ОН → С2Н5ОН + НВr;

5) щелочь нужна, чтобы нейтрализовать бромоводород и устранить возможность реакции его со спиртом;

6) таким же образом метиловый спирт можно получить из метана: СН4 → СН3Вr → СН3ОН;

7) спирты связаны генетически и с непредельными углеводородами.

Например, этанол получается при гидратации этилена:

СН= СН2 → Н2О = СН3  СН2  ОН.

Реакция идет при температуре 280–300°C и с давлением 7-8 МПа в присутствии ортофосфорной кислоты в качестве катализатора.

Промышленный синтез метанола, его особенности.

1. Метиловый спирт нельзя получить гидратацией непредельного углеводорода.

2. Его получают из синтез-газа, который представляет собой смесь оксида углерода (II) с водородом.

Метиловый спирт из синтез-газа получается по реакции:

СО + 2Н2 → СН3ОН + Q.

Характерные особенности реакции.

1. Реакция идет в сторону уменьшения объема смеси, при этом смещению равновесия в сторону образования нужного продукта будет способствовать повышение давления.

2. Чтобы реакция шла с достаточной скоростью, необходимы катализатор и повышенная температура.

3. Реакция обратимая, исходные вещества при прохождении через реактор реагируют не полностью.

4. В целях экономного их использования спирт, который образуется, необходимо выделять из продуктов реакции, а непрореагировавшие газы снова направлять в реактор, т. е. осуществить циркуляционный процесс.

5. В целях экономии энергетических затрат отходящие продукты экзотермической реакции необходимо использовать для нагревания газов, которые идут на синтез.

 

Понятие о ядохимикатах

Ядохимикаты (пестициды) – это химические средства борьбы с микроорганизмами, вредоносными или нежелательными с точки зрения экономики или здравоохранения.

Важнейшими видами пестицидов являются следующие.

1. Гербициды. Основные свойства:

а) это препараты для борьбы с сорняками, которые делятся на арборициды и альгициды;

б) это феноксикислоты, производные бензойной кислоты;

в) это динитроанилины, динитрофенолы, галогенофенолы;

г) это многие гетероциклические соединения;

д) первый синтетический органический гербицид – 2-метил-4,6-динитрофенол;

е) другие широко применяемые гербициды – атразин (2-хлор-4-этиламино-6-изопропиламино-1, 3, 5-триазин); 2,4-дихлорфеноксиуксусная кислота.

2. Инсектициды. Особенности:

а) это вещества, которые уничтожают вредных насекомых, их принято подразделять на антифидинги, аттрактаны и хемостерилизаторы;

б) к их числу относятся хлорорганические, фосфорорганические вещества, препараты, которые содержат мышьяк, препараты серы и др.;

в) один из наиболее известных инсектицидов – дихлордифенил-трихлорметилметан (ДДТ);

г) широко применяются в сельском хозяйстве и в быту такие инсектициды, как гексахлоран (гексахлорциклогексан).

3. Фунгициды.

Характерные особенности фунгицидов:

а) это вещества для борьбы с грибковыми болезнями растений;

б) в качестве фунгицидов используются различные антибиотики, сульфаниламидные препараты;

в) одним из наиболее простых по химической структуре фунгицидов является пентахлорфенол;

г) большинство пестицидов обладает отравляющими свойствами не только в отношении вредителей и возбудителей болезней;

д) при неумелом обращении они могут вызвать отравление людей, домашних и диких животных или гибель культурных посевов и насаждений;

е) пользоваться пестицидами необходимо очень осторожно, строго соблюдая инструкции по их применению;

ж) с целью минимизации вредного воздействия пестицидов на окружающую среду следует:

– применять вещества с более высокой биологической активностью и соответственно вносить их в меньшем количестве на единицу площади;

– применять вещества, которые не сохраняются в почве, а разлагаются на безвредные соединения.

 

Многоатомные спирты

Особенности строения многоатомных спиртов:

1) содержат в молекуле несколько гидроксильных групп, соединенных с углеводородным радикалом;

2) если в молекуле углеводорода заменены гидроксильными группами два атома водорода, то это двухатомный спирт;

3) простейшим представителем таких спиртов является этиленгликоль (этандиол-1,2):

СН2(ОН) – СН2(ОН);

4) во всех многоатомных спиртах гидроксильные группы находятся при разных атомах углерода;

5) для получения спирта, в котором хотя бы две гидроксильные группы находились бы при одном атоме углерода, проводилось много опытов, но спирт получить не удалось: такое соединение оказывается неустойчивым.

Физические свойства многоатомных спиртов:

1) важнейшие представители многоатомных спиртов – это этиленгликоль и глицерин;

2) это бесцветные сиропообразные жидкости сладковатого вкуса;

3) они хорошо растворимы в воде;

4) эти свойства присущи и другим многоатомным спиртам, например этиленгликоль ядовит.

Химические свойства многоатомных спиртов.

1. Как вещества, которые содержат гидроксильные группы, многоатомные спирты имеют сходные свойства с одноатомными спиртами.

2. При действии галогеноводородных кислот на спирты происходит замещение гидроксильной группы:

СН2ОН – СН2ОН + Н СI → СН2ОН – СН2СI + Н2О.

3. Многие спирты обладают и особыми свойствами: многоатомные спирты проявляют более кислые свойства, чем одноатомные и легко образуют алкоголяты не только с металлами, но и с гидроксидами тяжелых металлов. В отличие от одноатомных спиртов, многоатомные спирты реагируют с гидроксидом меди, давая комплексы синего цвета (качественная реакция на многоатомные спирты).

4. На примере многоатомных спиртов можно убедиться, что количественные изменения переходят в изменения качественные: накопление гидроксильных групп в молекуле обусловило в результате их взаимного появления у спиртов новых свойств по сравнению с одноатомными спиртами.

Способы получения и применения многоатомных спиртов: 1) подобно одноатомным спиртам, многоатомные спирты могут быть получены из соответствующих углеводородов через их галогенопроизводные; 2) наиболее употребительный многоатомный спирт – глицерин, он получается расщеплением жиров, а в настоящее время все больше синтетическим способом из пропилена, который образуется при крекинге нефтепродуктов.

Фенолы

Гидроксильные производные, которые содержат функциональные группы в боковой цепи, относятся к классу спиртов.

Фенолы – это гидроксильные производные ароматических углеводородов, в молекулах которых функциональные группы связаны с бензольным ядром.

Простейшим фенолом является одноатомное гидроксильное производное бензола С6Н5ОН, которое обычно и называется фенолом.

Свойства фенола:

1) это кристаллическое бесцветное вещество с характерным запахом, при частичном окислении на воздухе часто бывает розового цвета, очень легкоплавок;

2) фенол имеет некоторое сходство по химическим свойствам с одноатомными спиртами;

3) если фенол слегка нагреть (до плавления) и поместить в него металлический натрий, то выделяется водород. При этом по аналогии с алкоголятами образуется фенолят натрия 2С6Н5ОH + 2Nа → 2C6H5ONa + H2;

4) в отличие от алкоголятов, фенолят получается в том случае, если на фенол подействовать раствором щелочи;

5) при этом твердый фенол превращается в фенолят натрия, который быстро растворяется в воде: С6Н5ОН + NаОН → С6Н5ОNа + Н2О;

6) с учетом ионного расщепления связей уравнение приобретает следующий вид: \(C_6H_5O(H)+Na^++OH^- \rightarrow {C_6H_5O}^-+Na^+H_2O\).

Особенность реакции:

а) в этих реакциях проявляются кислотные свойства фенола;

б) степень диссоциации фенола больше, чем у воды и предельных спиртов, поэтому он называется еще карболовой кислотой;

3) фенол – это слабая кислота, даже угольная кислота более сильная, она может вытеснять фенол из фенолята натрия.

Способы применения и получения фенола

1. Как вещество, убивающее многие микроорганизмы, фенол давно используется в виде водного раствора для дезинфекции помещений, мебели, хирургических инструментов и т. д.

2. Он идет на получение красителей, многих лекарственных веществ.

3. Особенно большое количество его расходуется на производство широко распространенных фенолформальдегидных пластмасс.

4. Для промышленных нужд используется прежде всего фенол, который получается из каменноугольной смолы.

Но этот источник не может полностью удовлетворить потребность в феноле.

Поэтому в больших количествах он производится еще синтетическими способами из бензола.

Альдегиды – это органические вещества, молекулы которых содержат функциональную группу атомов, соединенную с углеводородным радикалом.

 



Вопросы
  1. Для осуществления превращения этанол + … —> этилат натрия + водород необходимо прибавить вещество

  2. Реакция с каким веществом используется в качестве качественной реакции на многоатомные спирты?

  3. При взаимодействии пара-аминофенола с гидроксидом натрия образовался органический продукт с молекулярной массой

  4. Какой объем 10%-го раствора фенола в бензоле (р = 0,94 г/мл) необходим для взаимодействия с металлическим натрием, чтобы выделившегося водорода хватило на полное гидрирование 1,12 л (н. у.) ацетилена?

  5. Фенол не вступает в реакцию с

  6. Каков объем \(CO_2,\) полученного при сгорании 16 г метанола, если он равен объему \(CO_2,\) выделившегося в процессе брожения глюкозы массой?

  7. Определите массу метанола, который необходим для получения водорода, если его по объем (при н. у.) равен объему водорода, образованного при взаимодействии 23 г этанола с натрием.

  8. Фенол не вступает в реакцию с

  9. В результате окисления вторичных спиртов хромовой смесью образуется продукт

  10. Как изменится растворимость спиртов в воде в ряду пентанол → гексанол → гептанол?

  11. При сжигании 2,24 л (н. у.) паров какого кислородсодержащего вещества с плотностью по гелию 11,5 получено 6,72 л \(H_2O \) и 4,48 л \(CO_2\) (н. у.)?

  12. Чему равна масса натрия, которая взаимодействует с 148 г бутанола?

  13. При взаимодействии с 9,4 г фенола необходим бром массой

  14. Чему равна масса натрия, необходимая для получения 44,8 л (н. у.) водорода из пропилового спирта?

  15. Укажите положение заместителей в формуле мета-(ксилола).

  16. Для получения 12,3 г (выход %) нитробензола требуется бензол массой

  17. При взаимодействии 18,6 г этандиола с 4,6 г натрия выделяется водород объемом (н. у.)

  18. 33 г углекислого газа и 6,75 г воды образуется при сжигании в кислороде 13,7 г некоторого представителя класса фенолов. Определите формулу этого вещества, если известно, что его плотность по гелию равна 27,5.

  19. Какое число изомеров соответствует формуле ароматического углеводорода \(C_6H_5-CH_3?\)

  20. Чему равна масса фенола, вступающего в реакцию с 189 г 50%-го раствора азотной кислоты?

  21. Чему равна масса 1,4-бутандиола, если при его взаимодействии с натрием выделилось 5,6 л (н. у.) водорода?

  22. Чему равно количество σ-связей в молекуле фенола?

  23. С каким веществом вступит в реакцию \(CH_3COH?\)

  24. Чему равна масса 0,5 моль вещества\(X_3\) в цепочке превращений: \(CH_3COONa\xrightarrow{+NaOH(тв)} X_1\xrightarrow{+Cl_2(свет)}X_2\xrightarrow{+2Na,C_2H_5Cl}X_3\)?

  25. Первые представители своего гомологического ряда

  26. Какими веществами являются X и У в схеме превращений этилацетат \(\xrightarrow{+Y}\) ацетат натрия + уксусная кислота?

  27. Укажите название вещества.

     
  28. При межмолекулярной дегидратации предельного одноатомного спирта массой 7,1 г образовалось 2 г воды. Формула спирта

  29. В смесь метанола и этанола массой 22 г добавили натрий, при этом выделилось 6,72 л газа. Содержание метанола и этанола в смеси соответственно

  30. Вещество с общей формулой \(C_nH_{2n+2}O\) 

  31. При взаимодействии 585 мл 50%-ного раствора предельного одноатомного спирта (плотность 0,82 г/мл) с натрием выделилось 44,8 л газа. Формула и название спирта

  32. При межмолекулярной дегидратации предельного одноатомного спирта массой 23 г образовалось 4,5 г воды. Укажите формулу спирта.

  33. При окислении пропанола-1 оксидом меди (II) образуется

  34. Одинаковую функциональную группу имеют

  35. При внутримолекулярной дегидратации предельного одноатомного спирта массой 30 г образовалось 9 г воды. Укажите молекулярную формулу спирта.

  36. Укажите соединения с молекулярной массой 74, являющиеся изомерами.

  37. Дана цепочка превращений: С\(_2\)Н\(_5\)ОН → А → СН\(_3\)СООН. Вычислите массу продукта А, если известно, что масса спирта, вступившего в реакцию, равна 23 г при выходе продукта 75%.

  38. Реакции получения одноатомных спиртов – это

  39. Этанол можно получить по следующей схеме: СН\(_3\) – СН\(_3\) → CH\(_3\)– CH\(_2\)Br → CH\(_3\)CH\(_2\)OH. Определите массу этана и массу бромэтана, необходимого для получения 138 г этанола.

  40. Спирты реагируют с

  41. При окислении этанола оксидом меди(II) образуется

  42. При взаимодействии этаналя с гидроксидом меди(II) образуется

  43. Дана цепочка превращений: \(C_2H_2\xrightarrow{активированный\ C,t}A\xrightarrow{+Cl_2}B\xrightarrow{+NaOH}C\xrightarrow{+Na}D\).

  44. Утверждение, являющееся верным для спиртов

  45. При взаимодействии пропанола массой 40 г с натрием массой 8,5 г

Сообщить об ошибке